注册
当前位置: 首页> 报告总结> 自查报告>

线性代数知识点总结汇总

发布时间:2021-04-10 20:09:49 浏览数:

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式 数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值:
(三)按行(列)展开 9、按行展开定理:
(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值 (2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式:
(1)|kA|=kn|A| (2)|AB|=|A|·|B| (3)|AT|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则:
(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解 (2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;
如果方程组有非零解,那么必有D=0。

2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项:
(1)矩阵乘法要求前列后行一致;

(2)矩阵乘法不满足交换律;
(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。

2、转置的性质(5条) (1)(A+B)T=AT+BT (2)(kA)T=kAT (3)(AB)T=BTAT (4)|A|T=|A| (5)(AT)T=A (二)矩阵的逆 3、逆的定义:
AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(AT)-1=(A-1)T (5)(A-1)-1=A 5、逆的求法:
(1)A为抽象矩阵:由定义或性质求解 (2)A为数字矩阵:(A|E)→初等行变换→(E|A-1) (三)矩阵的初等变换 6、初等行(列)变换定义:
(1)两行(列)互换;

(2)一行(列)乘非零常数c (3)一行(列)乘k加到另一行(列) 7、初等矩阵:单位矩阵E经过一次初等变换得到的矩阵。

8、初等变换与初等矩阵的性质:
(1)初等行(列)变换相当于左(右)乘相应的初等矩阵 (2)初等矩阵均为可逆矩阵,且Eij-1=Eij(i,j两行互换);

Ei-1(c)=Ei(1/c)(第i行(列)乘c) Eij-1(k)=Eij(-k)(第i行乘k加到j) ★(四)矩阵的秩 9、秩的定义:非零子式的最高阶数 注:(1)r(A)=0意味着所有元素为0,即A=O (2)r(An×n)=n(满秩)←→ |A|≠0 ←→A可逆;

r(A)<n←→|A|=0←→A不可逆;

(3)r(A)=r(r=1、2、…、n-1)←→r阶子式非零且所有r+1子式均为0。

10、秩的性质:(7条) (1)A为m×n阶矩阵,则r(A)≤min(m,n) (2)r(A±B)≤r(A)±(B) (3)r(AB)≤min{r(A),r(B)} (4)r(kA)=r(A)(k≠0) (5)r(A)=r(AC)(C是一个可逆矩阵) (6)r(A)=r(AT)=r(ATA)=r(AAT) (7)设A是m×n阶矩阵,B是n×s矩阵,AB=O,则r(A)+r(B)≤n 11、秩的求法:
(1)A为抽象矩阵:由定义或性质求解;

(2)A为数字矩阵:A→初等行变换→阶梯型(每行第一个非零元素下面的元素均为0),则r(A)=非零行的行数 (五)伴随矩阵 12、伴随矩阵的性质:(8条) (1)AA*=A*A=|A|E → ★A*=|A|A-1 (2)(kA)*=kn-1A* (3)(AB)*=B*A* (4)|A*|=|A|n-1 (5)(AT)*=(A*)T (6)(A-1)*=(A*)-1=A|A|-1 (7)(A*)*=|A| n-2·A ★(8)r(A*)=n (r(A)=n);

r(A*)=1 (r(A)=n-1);

r(A*)=0 (r(A)<n-1) (六)分块矩阵 13、分块矩阵的乘法:要求前列后行分法相同。

14、分块矩阵求逆:
3 向量 (一)向量的概念及运算 1、向量的内积:(α,β)=αTβ=βTα 2、长度定义:
||α||= 3、正交定义:(α,β)=αTβ=βTα=a1b1+a2b2+…+anbn=0 4、正交矩阵的定义:A为n阶矩阵,AAT=E ←→ A-1=AT ←→ ATA=E → |A|=±1 (二)线性组合和线性表示 5、线性表示的充要条件:
非零列向量β可由α1,α2,…,αs线性表示 (1)←→非齐次线性方程组(α1,α2,…,αs)(x1,x2,…,xs)T=β有解。

★(2)←→r(α1,α2,…,αs)=r(α1,α2,…,αs,β)(系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验) 6、线性表示的充分条件:(了解即可) 若α1,α2,…,αs线性无关,α1,α2,…,αs,β线性相关,则β可由α1,α2,…,αs线性表示。

7、线性表示的求法:(大题第二步) 设α1,α2,…,αs线性无关,β可由其线性表示。

(α1,α2,…,αs|β)→初等行变换→(行最简形|系数) 行最简形:每行第一个非0的数为1,其余元素均为0 (三)线性相关和线性无关 8、线性相关注意事项:
(1)α线性相关←→α=0 (2)α1,α2线性相关←→α1,α2成比例 9、线性相关的充要条件:
向量组α1,α2,…,αs线性相关 (1)←→有个向量可由其余向量线性表示;

(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,xs)T=0有非零解;

★(3)←→r(α1,α2,…,αs)<s 即秩小于个数 特别地,n个n维列向量α1,α2,…,αn线性相关 (1)←→ r(α1,α2,…,αn)<n (2)←→|α1,α2,…,αn |=0 (3)←→(α1,α2,…,αn)不可逆 10、线性相关的充分条件:
(1)向量组含有零向量或成比例的向量必相关 (2)部分相关,则整体相关 (3)高维相关,则低维相关 (4)以少表多,多必相关 ★推论:n+1个n维向量一定线性相关 11、线性无关的充要条件 向量组α1,α2,…,αs 线性无关 (1)←→任意向量均不能由其余向量线性表示;

(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,xs)T=0只有零解 (3)←→r(α1,α2,…,αs)=s 特别地,n个n维向量α1,α2,…,αn 线性无关 ←→r(α1,α2,…,αn)=n ←→|α1,α2,…,αn |≠0 ←→矩阵可逆 12、线性无关的充分条件:
(1)整体无关,部分无关 (2)低维无关,高维无关 (3)正交的非零向量组线性无关 (4)不同特征值的特征向量无关 13、线性相关、线性无关判定 (1)定义法 ★(2)秩:若小于阶数,线性相关;
若等于阶数,线性无关 【专业知识补充】 (1)在矩阵左边乘列满秩矩阵(秩=列数),矩阵的秩不变;
在矩阵右边乘行满秩矩阵,矩阵的秩不变。

(2)若n维列向量α1,α2,α3 线性无关,β1,β2,β3 可以由其线性表示,即(β1,β2,β3)=(α1,α2,α3)C,则r(β1,β2,β3)=r(C),从而线性无关。

←→r(β1,β2,β3)=3 ←→ r(C)=3 ←→ |C|≠0 (四)极大线性无关组与向量组的秩 14、极大线性无关组不唯一 15、向量组的秩:极大无关组中向量的个数成为向量组的秩 对比:矩阵的秩:非零子式的最高阶数 ★注:向量组α1,α2,…,αs 的秩与矩阵A=(α1,α2,…,αs)的秩相等 ★16、极大线性无关组的求法 (1)α1,α2,…,αs 为抽象的:定义法 (2)α1,α2,…,αs 为数字的:
(α1,α2,…,αs)→初等行变换→阶梯型矩阵 则每行第一个非零的数对应的列向量构成极大无关组 (五)向量空间 17、基(就是极大线性无关组)变换公式:
若α1,α2,…,αn 与β1,β2,…,βn 是n维向量空间V的两组基,则基变换公式为(β1,β2,…,βn)=(α1,α2,…,αn)Cn×n 其中,C是从基α1,α2,…,αn 到β1,β2,…,βn 的过渡矩阵。

C=(α1,α2,…,αn)-1(β1,β2,…,βn) 18、坐标变换公式:
向量γ在基α1,α2,…,αn与基β1,β2,…,βn 的坐标分别为x=(x1,x2,…,xn)T,y=(y1,y2,…,yn)T,,即γ=x1α1 + x2α2 + … +xnαn =y1β1 + y2β2 + … +ynβn,则坐标变换公式为x=Cy或y=C-1x。其中,C是从基α1,α2,…,αn 到β1,β2,…,βn 的过渡矩阵。C=(α1,α2,…,αn)-1(β1,β2,…,βn) (六)Schmidt正交化 19、Schmidt正交化 设α1,α2,α3 线性无关 (1)正交化 令β1=α1 (2)单位化 4 线性方程组 (一)方程组的表达形与解向量 1、解的形式:
(1)一般形式 (2)矩阵形式:Ax=b;

(3)向量形式:A=(α1,α2,…,αn) 2、解的定义:
若η=(c1,c2,…,cn)T满足方程组Ax=b,即Aη=b,称η是Ax=b的一个解(向量) (二)解的判定与性质 3、齐次方程组:
(1)只有零解←→r(A)=n(n为A的列数或是未知数x的个数) (2)有非零解←→r(A)<n 4、非齐次方程组:
(1)无解←→r(A)<r(A|b)←→r(A)=r(A)-1 (2)唯一解←→r(A)=r(A|b)=n (3)无穷多解←→r(A)=r(A|b)<n 5、解的性质:
(1)若ξ1,ξ2是Ax=0的解,则k1ξ1+k2ξ2是Ax=0的解 (2)若ξ是Ax=0的解,η是Ax=b的解,则ξ+η是Ax=b的解 (3)若η1,η2是Ax=b的解,则η1-η2是Ax=0的解 【推广】 (1)设η1,η2,…,ηs是Ax=b的解,则k1η1+k2η2+…+ksηs为 Ax=b的解 (当Σki=1) Ax=0的解 (当Σki=0) (2)设η1,η2,…,ηs是Ax=b的s个线性无关的解,则η2-η1,η3-η1,…,ηs-η1为Ax=0的s-1个线性无关的解。

变式:①η1-η2,η3-η2,…,ηs-η2 ②η2-η1,η3-η2,…,ηs-ηs-1 (三)基础解系 6、基础解系定义:
(1)ξ1,ξ2,…,ξs 是Ax=0的解 (2)ξ1,ξ2,…,ξs 线性相关 (3)Ax=0的所有解均可由其线性表示 →基础解系即所有解的极大无关组 注:基础解系不唯一。

任意n-r(A)个线性无关的解均可作为基础解系。

★7、重要结论:(证明也很重要) 设A施m×n阶矩阵,B是n×s阶矩阵,AB=O (1)B的列向量均为方程Ax=0的解 (2)r(A)+r(B)≤n(第2章,秩) 8、总结:基础解系的求法 (1)A为抽象的:由定义或性质凑n-r(A)个线性无关的解 (2)A为数字的:A→初等行变换→阶梯型 自由未知量分别取1,0,0;
0,1,0;
0,0,1;
代入解得非自由未知量得到基础解系 (四)解的结构(通解) 9、齐次线性方程组的通解(所有解) 设r(A)=r,ξ1,ξ2,…,ξn-r 为Ax=0的基础解系, 则Ax=0的通解为k1η1+k2η2+…+kn-rηn-r (其中k1,k2,…,kn-r为任意常数) 10、非齐次线性方程组的通解 设r(A)=r,ξ1,ξ2,…,ξn-r 为Ax=0的基础解系,η为Ax=b的特解, 则Ax=b的通解为η+ k1η1+k2η2+…+kn-rηn-r (其中k1,k2,…,kn-r为任意常数) (五)公共解与同解 11、公共解定义:
如果α既是方程组Ax=0的解,又是方程组Bx=0的解,则称α为其公共解 12、非零公共解的充要条件:
方程组Ax=0与Bx=0有非零公共解 ←→ 有非零解←→ 13、重要结论(需要掌握证明) (1)设A是m×n阶矩阵,则齐次方程ATAx=0与Ax=0同解,r(ATA)=r(A) (2)设A是m×n阶矩阵,r(A)=n,B是n×s阶矩阵,则齐次方程ABx=0与Bx=0同解,r(AB)=r(B) 5 特征值与特征向量 (一)矩阵的特征值与特征向量 1、特征值、特征向量的定义:
设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。

2、特征多项式、特征方程的定义:
|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。

|λE-A |=0称为矩阵A的特征方程(λ的n次方程)。

注:特征方程可以写为|A-λE|=0 3、重要结论:
(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量 (2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。

(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。

△4、总结:特征值与特征向量的求法 (1)A为抽象的:由定义或性质凑 (2)A为数字的:由特征方程法求解 5、特征方程法:
(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn 注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略) (2)解齐次方程(λiE-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λiE-A)个解) 6、性质:
(1)不同特征值的特征向量线性无关 (2)k重特征值最多k个线性无关的特征向量 1≤n-r(λiE-A)≤ki (3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σaii (4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σaii=αTβ=βTα,λ2=…=λn=0 (5)设α是矩阵A属于特征值λ的特征向量,则 A f(A) AT A-1 A* P-1AP(相似) λ f(λ) λ λ-1 |A|λ-1 λ α α / α α P-1α (二)相似矩阵 7、相似矩阵的定义:
设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B 8、相似矩阵的性质 (1)若A与B相似,则f(A)与f(B)相似 (2)若A与B相似,B与C相似,则A与C相似 (3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和) 【推广】 (4)若A与B相似,则AB与BA相似,AT与BT相似,A-1与B-1相似,A*与B*也相似 (三)矩阵的相似对角化 9、相似对角化定义:
如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ= , 称A可相似对角化。

注:Aαi=λiαi(αi≠0,由于P可逆),故P的每一列均为矩阵A的特征值λi的特征向量 10、相似对角化的充要条件 (1)A有n个线性无关的特征向量 (2)A的k重特征值有k个线性无关的特征向量 11、相似对角化的充分条件:
(1)A有n个不同的特征值(不同特征值的特征向量线性无关) (2)A为实对称矩阵 12、重要结论:
(1)若A可相似对角化,则r(A)为非零特征值的个数,n-r(A)为零特征值的个数 (2)若A不可相似对角化,r(A)不一定为非零特征值的个数 (四)实对称矩阵 13、性质 (1)特征值全为实数 (2)不同特征值的特征向量正交 (3)A可相似对角化,即存在可逆矩阵P使得P-1AP=Λ (4)A可正交相似对角化,即存在正交矩阵Q,使得Q-1AQ=QTAQ=Λ 6 二次型 (一)二次型及其标准形 1、二次型:
(1)一般形式 (2)矩阵形式(常用) 2、标准形:
如果二次型只含平方项,即f(x1,x2,…,xn)=d1x12+d2x22+…+dnxn2 这样的二次型称为标准形(对角线) 3、二次型化为标准形的方法:
(1)配方法:
通过可逆线性变换x=Cy(C可逆),将二次型化为标准形。其中,可逆线性变换及标准形通过先配方再换元得到。

★(2)正交变换法:
通过正交变换x=Qy,将二次型化为标准形λ1y12+λ2y22+…+λnyn2 其中,λ1,λ2,…,λn 是A的n个特征值,Q为A的正交矩阵 注:正交矩阵Q不唯一,γi与λi 对应即可。

(二)惯性定理及规范形 4、定义:
正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;

负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;

规范形:f=z12+…zp2-zp+12-…-zp+q2称为二次型的规范形。

5、惯性定理:
二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。

注:(1)由于正负惯性指数不变,所以规范形唯一。

(2)p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=r(A) (三)合同矩阵 6、定义:
A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=CTAC,称A与B合同 △7、总结:n阶实对称矩阵A、B的关系 (1)A、B相似(B=P-1AP)←→相同的特征值 (2)A、B合同(B=CTAC)←→相同的正负惯性指数←→相同的正负特征值的个数 (3)A、B等价(B=PAQ)←→r(A)=r(B) 注:实对称矩阵相似必合同,合同必等价 (四)正定二次型与正定矩阵 8、正定的定义 二次型xTAx,如果任意x≠0,恒有xTAx>0,则称二次型正定,并称实对称矩阵A是正定矩阵。

9、n元二次型xTAx正定充要条件:
(1)A的正惯性指数为n (2)A与E合同,即存在可逆矩阵C,使得A=CTC或CTAC=E (3)A的特征值均大于0 (4)A的顺序主子式均大于0(k阶顺序主子式为前k行前k列的行列式) 10、n元二次型xTAx正定必要条件:
(1)aii>0 (2)|A|>0 11、总结:二次型xTAx正定判定(大题) (1)A为数字:顺序主子式均大于0 (2)A为抽象:①证A为实对称矩阵:AT=A;
②再由定义或特征值判定 12、重要结论:
(1)若A是正定矩阵,则kA(k>0),Ak,AT,A-1,A*正定 (2)若A、B均为正定矩阵,则A+B正定

上一篇:人教版(PEP)2019-2020学年小学英语六年级下册Unit,1,How,tall,are,you,Part,B,第三课时A卷

上一篇:国家开放大学电大专科《外国文学》2026期末试题及答案(f试卷号:2402)

相关范文